Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy.
نویسندگان
چکیده
PURPOSE The aim of the presented research was to find a combination of surface modification methods of implants made of the Ti-6Al-4V ELI alloy, that lead to formation of effective barrier for metallic ions that may infiltrate into solution. METHODS To this end, the following tests were carried out: roughness measurement, the voltamperometric tests (potentiodynamic and potentiostatic), and the ion infiltration test. RESULTS The electropolishing process resulted in the lowering of surface roughness in comparison with mechanical treatment of the surface layer. The anodization process and steam sterilization increased corrosion resistance regardless of the mechanical treatment or electropolishing. The crevice corrosion tests revealed that independent of the modification method applied, the Ti-6Al-4V ELI alloy has excellent crevice corrosion resistance. The smallest quantity of ions infiltrated to the solution was observed for surface modification consisting in the mechanical treatment and anodization with the potential of 97 V. CONCLUSIONS Electric parameters deter- mined during studies were the basis for effectiveness estimation of particular surface treatment methods. The research has shown that the anodization process significantly influences the pitting corrosion resistance of the Ti-6Al-4V ELI alloy independent of the previous surface treatment methods (mechanical and electrochemical). The surface layer after such modification is a protective barrier for metallic ions infiltrated to solution and protects titanium alloy against corrosive environment influence.
منابع مشابه
TIG Surface Alloying of Ti-6Al-4V with Nitrogen and Chromium for Improved Tribological Properties
Due to special properties such as low density, high strength and high corrosion resistance Ti-6Al-4V alloy has been used extensively in various industries, especially in the aerospace aspects. However the major problem of this alloy is its poor tribological properties under relatively high loads. In the present study, in order to improve the tribological properties of mentioned alloy, chromium ...
متن کاملMechanical Surface Treatments of Ti-6Al-4V Miniplate Implant Manufactured by Electrical Discharge Machining (TECHNICAL NOTE)
Present work aims at multi-mechanical surface treatment of Ti-6Al-4V based-miniplate implant manufactured by electrical discharge machining (EDM) for biomedical use. Mechanical surface treatment consists of consequent use of ultrasonic cleaning, rotary tumbler polishing, and brushing. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Al...
متن کاملFatigue and corrosion fatigue properties of Ti-6Al-4V implant grade titanium alloy in Ringer solution
Nowadays modification of metallic biomaterials which are used as implants for bone and hard tissues replacement is considered as an important subject. In the current study, corrosion fatigue properties of Ti-6Al-4V alloy investigated via Rotating-Bending standard test method and then, the results compared with the fatigue properties of the specimens tested in the same conditions. Scanning elect...
متن کاملEvaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting
This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-...
متن کاملEffect of Surface Treatment on Tribological Behavior of Ti-6Al-4V Implant Alloy
Titanium alloys are extensively used in various fields of engineering, medicine, aerospace, marine due to its excellent mechanical properties. Its usage is more pronounced today in the field of biomedical implants due to its superior biocompatibility, corrosive resistance and high strength to weight ratio. It has poor abrasive wear resistance due to high coefficient of friction and low thermal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta of bioengineering and biomechanics
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2015